Enterprise-deployed applications, apart from a complex and fragmented environment, intertwine with a mixture of networks, operating systems, and databases. This oftentimes leads to fragmentation in the application security architecture, combined with the shortage of precise and confident security roadmap. RASP, short for Runtime Application Self-Protection, is largely developed to address the ad hoc methods adopted by developers when threats arise.
RASP is a security component built in the application's runtime environment, enabling protection from the inside. Since Runtime Application Self-Protection is an integral part of the application, it allows monitoring in real-time and detection of any type of anomaly in the mobile app's runtime behavior. With continuous monitoring of the app's behavior, RASP protects the mobile application from data breaches, various mobile app security threats (e.g., hooking and emulator attacks), and tampering – all without any human intervention.

However, with RASP technology, application security got a brand new definition. It is no longer a casual response to selected threats but a proactive measure able to respond to known and emerging threats in real time. Runtime Application Self-Protection, RASP, is an innovation in the security ecosystem, equipped to deal with runtime attacks on the software's application layer by providing more visibility into concealed vulnerabilities.
Essentially, it is a security software integrated with the application or its runtime environment, constantly intercepting calls to the application in order to inspect the security. RASP is not just sitting there and waiting for a threat to impact the app. Instead, Runtime Application Self-Protection proactively hunts for malware in the incoming traffic to the app and prevents fraudulent calls from executing inside the app. By protecting the
application from the inside, RASP solution neutralizes potential known vulnerabilities – all without any kind of human intervention.
There are three typical responses when Runtime Application Self-Protection is in place:
What makes RASP such breakthrough technology is the ability to protect the application even if the attacker has penetrated perimeter defenses. Since it has access to contextual data, application logic, data event flows, and configuration, RASP counters attacks, minimizing the false positives. This means that it is able to distinguish between attacks and legitimate information requests with high accuracy.
Moreover, ''Self-Protection'' also refers to application data, from its input to its deletion. This is especially useful when it comes to enterprise applications that need to be in line with the latest compliance requirements. For example, in the case of a data breach where the stolen data is unreadable to the attacker, regulators do not require the breach to be reported. Also, the BYOD approach proved to be a challenge for today's security experts – luckily, RASP covers this area as well.
In case you're curious, feel free to
contact us - zero obligation. Our ASEE team will be happy to hear you out.